
Jive Anywhere – Cartridges SDK 2.1

Overview
Jive Anywhere allows extending its behavior by creating cartridges which can be deployed using the Admin

console. For instance, a cartridge can change the search logic for relevant discussions, change UI elements and

generate previews for created discussions. Each cartridge is only activated for a list of predefined URL patterns

and only one cartridge can be activated at a time for a given web page. Note: A cartridge is not intended for

branding or theming purposes and does not allow that.

You can develop a cartridge for your company needs, such as extending a web app or download a cartridge

created by others. Cartridges are developed using industry standards and easy to learn technologies including

JavaScript, jQuery, HTML and CSS.

Minimum requirements
Client requirements:

 Jive Anywhere 2.1

 Internet Explorer 8, Chrome 22, Firefox 16 or Safari 5.1

Server requirements:

 Extended APIs 2.1 (v3 recommended)

 Jive 5.x

Cartridges SDK 2.1 introduces some new features as the minimumRequiredVersion property

and APIs for supporting multiple communities. These changes lead to breaking changes.

Please read the “What’s new” section for more information.

When using multiple communities, cartridges are only loaded from the server of the default

community but apply to all connected communities. The default community can be set using

the settings page of Jive Anywhere.

What’s new in Cartridges SDK 2.1
The following changes that are marked in red, must be applied to existing cartridges otherwise they will fail to

run on the new version of Jive Anywhere.

Multiple communities APIs
Previously a cartridge could only access the default community which made it automatically disabled for
communities other than the default one.

You can now use activeConnection, defaultConnection and connections[] of the connectionContexts property
to build cartridges with logic that is enriched from several communities. The JCommon.asyncRunForArray()
helper method can greatly help with initiating multiple asynchronous requests to multiple servers and process
the results at once.
The createDiscussionViewFrame() has also been enhanced to allow setting the community of the discussion in
view.

 ModuleContext.clientFacade ModuleContext.connectionContexts.activeConnection.clientFacade

 ModuleContext.getConnectionSettings()

ModuleContext.connectionContexts.activeConnection.getConnectionSettings()

More ways to control the UI of the sidebar and the new discussion dialogue
You can now use reloadSidebar() and showSidebar() to dynamically load the discussion list and re-invoke
onGetModuleUi when necessary. ModuleUiInfo properties such as postButtonText, hideDefaultUi, hideFilters
and the newDiscussionCustomCheckboxes array allow further customization for the look and feel of the
sidebar.

The new discussion dialogue can be customized by adding additional checkboxes. Each checkbox must have a
name, default value (boolean) and text for its label. When a new discussion is being created the discussion
object that is passed to onCreateDiscussion() will have a property named customValues with a dictionary of the
values of these custom checkboxes. You can also display a progress bar while a discussion is being created, in
case of large binary file uploads using the uploadProgressCallback of onCreateDiscussion().

By using the refreshDiscussionPreviewOnChange property of a checkbox you may ask to trigger the
onGetPreviewData() method whenever a checkbox value changes to re-generate the HTML preview for the
discussion using the new values.

 onGetPreviewData (openGraphMetadata, callback) onGetPreviewData (openGraphMetadata,
isFinal, customValues, callback)

 onCreatePublicDiscussion (discussion, callback) onCreateDiscussion (discussion, isPublic,
callbackCompleted, uploadProgressCallback)

 onCreatePrivateDiscussion (discussion, callback) onCreateDiscussion (discussion, isPublic,
callbackCompleted, uploadProgressCallback)

New server APIs
ClientFacade now contains additional methods such as createPublicConvertedDiscussion(),
createPrivateConvertedDiscussion(), getConvertedDiscussions() and getUserByEmail() which can help you
building cartridges for migrating Email based services and portals with your Jive community.

Comprehensive support for binary file handling
You can now download binary files (such as images) into Uint8Array objects using getBinaryFile(). You can also
upload images to a Jive community server using the uploadImage() API and then use the received Id to embed
these images into discussions and documents. The generic postMultipartRequest() and sendBinaryRequest()
helper methods of the restHandler can be used with a given Jive service URL to send a multipart request of
mixed binary and textual parts while authentication is handled by the API.

Easier to target for multiple versions of Jive Anywhere and Jive server
The ModuleContext and ClientFacade objects now expose a version property that contains the version of Jive
Anywhere and the server APIs correspondingly. JCommon.isBinarySupported property returns true if the
browser supports binary APIs.

module.js now must implement a public property named minimumRequiredVersion which contains the
minimum version of Jive Anywhere required for the cartridge.

 this.minimumRequiredVersion = 2.1;

Other improvements
JsRender is now available both in the page context (pagescript.js) and the background context (module.js) using
the $.render and $.templates methods.

Common use cases for the SDK
The SDK can extend Jive Anywhere and also enrich third party websites with Jive content. Here is a list of the

most common use cases can be achieved with the SDK:

 Create a custom dynamic preview which is added as a quote when posting a discussion. By default

OpenGraph data is extracted from the web page but you can easily replace this logic with custom HTML

template bound to any part of the DOM. For instance the included LinkedIn cartridge adds a preview of

the visited profile into the created discussion.

 Enrich third party websites with content from Jive. For instance you can write code to show a user

popup with details from Jive when hovering a user hyperlink in LinkedIn.

 Define a discussion list search logic for a website. For instance the included LinkedIn cartridge extracts

the visited profile name from LinkedIn and performs a search for that name in Jive. The search results

are then displayed in the sidebar instead of just searching for discussions contain the URL string.

 Bring content from other servers into the search results. For instance you can query other intranet web

servers in the organization using standard HTTP requests and show the results in the Jive Anywhere

sidebar.

 Change the logic used for connecting a web page to a group, space or project. By default the connection

is made for just the visited URL but in some cases you want to connect the whole website or all pages

related to the same context. After the logic was defined (for instance by extracting a title from the

DOM), whenever a user is connecting a group, the same group will also appear as connected to all other

pages of this context (e.g. other pages having the same title in the DOM).

 Change some UI elements in the Jive Anywhere sidebar when visiting specific web pages. For instance

you can change the title of the “Discussions” and “Related” tabs, display custom HTML content on the

sidebar and set the default new discussion title to be used when posting a discussion. You can also add

custom checkboxes to the new discussion dialogue.

 Embed a discussion view IFRAME (same as the one displayed when clicking a discussion on the sidebar)

into your web app or intranet portal by providing a Jive item id and type extracted from the content on

your web pages or by using search keywords.

 Add file attachments, embedded images or other binary content to created discussions. When a

discussion is created, you can easily issue a download request to download content from the visited web

page then upload this data to the created discussion. You can also replace the complete logic by hooking

to the onCreateDiscussion() event.

Developer Guide

Components
A cartridge is composed by the following main components:

 module.js is the cartridge’s main script file that runs in the background context of Jive Anywhere. It can

implement any or none of the pre-defined APIs to set runtime hooks. Cross-origin HTTP requests can be

initiated here.

 pagescript.js (optional) is a script file that is injected into the page when the cartridge is active. It can

contain public helper functions for reading and manipulating the DOM. Messages can be sent and

received between module.js and this script.

 icon.png (optional) is a 16x16 pixels image file that is displayed on the sidebar when the cartridge is

active.

 Other content files (optional) such as images, HTML templates, CSS files and so on. These files can be

read by using ModuleContext.getResourceFile() and referred to by using

ModuleContext.getResourceUrl() which returns a fully qualified URL that can be embedded into the

HTML.

 Some metadata, such as the cartridge display name and a list of activation URL patterns. These are

provided in the Admin console together with a zip file that contains all the above content.

Creating your first Jive Anywhere cartridge
To create a basic LinkedIn cartridge, create an empty folder in your local file system with the following files:

module.js

// Note: ModuleContext, JCommon and $ are provided by the module manager

// Specify the minimum required version of Jive Anywhere for the module

this.minimumRequiredVersion = 2.1;

// The init function runs only if the cartridge has been activated

this.init = function () {

 // Compile markup as named templates to be used by onGetPreviewData later

 var html = ModuleContext.getResourceFile("LinkedInPageDataTemplate.html");

 $.templates({

 linkedInPageDataTemplate: html

 });

};

// Invoked on URL (community) search

this.onGetUrlSearchResults = function (search, callback) {

 // Extracts the username from the page title

 var userName = extractUserName();

 if (userName != null) {

 // Performs an exact search based on the extracted username and pass the results

 // to the callback

 var query = "\"" + userName + "\"";

 ModuleContext.connectionContexts.activeConnection.clientFacade.search(query, search.offset,

searchData.limit, search.sortBy, search.isAscending, callback);

 }

};

// Display the username as the title of the Community tab

this.onGetModuleUI = function (callback) {

 var moduleUiInfo = { defaultTabId: 0, tabs: [{ title: extractUserName() }, {}] };

 callback(moduleUiInfo);

};

// Generates preview data when submitting a new discussion instead of the default OpenGraph

this.onGetPreviewData = function (openGraphMetadata, isFinal, customValues, callback) {

 // Extracting page data by invoking a page helper function on pagescript.js

 ModuleContext.runPageScript("getPreviewData", null, function (pageData) {

 // Use the LinkedInPageDataTemplate.html template to generate html markup

 var html = $.render.linkedInPageDataTemplate(pageData);

 // Pass the html back to the module manager

 callback(html);

 });

};

// Helper function to extract the username from the page title

var extractUserName = function () {

 var title = ModuleContext.pageInfo.title;

 return $.trim(title.substring(0, title.indexOf("| LinkedIn")));

};

pagescript.js

// PageModuleContext, JCommon and $ are provided by the module manager

// Page helper function called by onGetPreviewData to extract fields out of the page
this.getPreviewData = function (params, sendResponse) {
 var profile = new Object();

 profile.fields = [];
 profile.url = document.location.href;
 profile.name = $(".full-name").text();
 profile.locality = $(".locality:eq(0)").text();
 profile.industry = $(".industry:eq(0)").text();

 if ($(".profile-overview").length > 0) {
 // new LinkedIn site
 profile.image = $(".profile-picture img").first().attr("src");

 profile.title = $("p.title:eq(0)").text();

 $(".profile-overview table").find("th").each(function (index) {
 var title = $(this).text();
 if (title != "Websites") {
 var data = $(this).next("td").find("li");
 var values = [];
 data.each(function () {
 var value = $(this).text();
 if (value.substring(0, 1) == ",") {
 value = value.substring(1);
 }
 values.push(value);
 });
 if (data.length > 0) {
 profile.fields.push({ name: title, values: values });
 }
 }
 });
 }

 if (!profile.image) {
 // use default profile image if image not defined
 profile.image =
"http://static02.linkedin.com/scds/common/u/img/icon/icon_no_photo_40x40.png";
 }

 sendResponse(profile);
};

LinkedInPageDataTemplate.html

<div style="margin-top: 5px; background-color: #fbfbfb; border: 1px solid #D6D6D6;">

 <table style="border: 0px solid #CCC;">

 <tr>

 <td>

 url}}" target="_blank">

 </td>

 <td>

 url}}" target="_blank">{{>name}}

 {{>title}}

 {{>locality}} | {{>industry}}

 </td>

 </tr>

 {{for fields}}

 <tr>

 <td>{{>name}}</td>

 <td>

 {{for values}}

 <div>{{>#data}}</div>

 {{/for}}

 </td>

 </tr>

 {{/for}}

 </table>

</div>

Note: Any text editor can be used such as Notepad or Visual Studio for syntax highlighting.

Download the image file located at https://developer.linkedin.com/sites/default/files/LinkedIn_Logo16px.png

and save it as icon.png into the same folder.

Pack the content of the folder into a zip file named LinkedInModule.zip (any name is okay).

Head to the Admin console of your Jive SBS (http://your-jive-address/admin), select System -> Settings -> Jive

Anywhere at the menus and click the Modules tab. You must have an account with administrator privileges to

enter this page.

Click Upload new module. In the display name field type LinkedIn. Click “Choose file” and select the created

LinkedInModule.zip file.

In the included patterns field type linkedin.com/profile/view and click the up button to move it into the patterns

list. Repeat this step with linkedin.com/pub/ and linkedin.com/in/. The created cartridge will be activated only

for URLs matching these patterns.

When finished click Submit and make sure you receive no errors.

Restart your browser and head to a profile page on LinkedIn. You should now see the LinkedIn icon appears on

the Jive Anywhere sidebar. Open the sidebar, the profile name should appear as the title of the Community tab.

https://developer.linkedin.com/sites/default/files/LinkedIn_Logo16px.png

Create a new discussion, choose any participant (or location) and click Post. Click the created discussion and you

should see a preview of the LinkedIn profile embedded into its body.

API Reference

Script files

module.js

This is the cartridge’s main script file that runs in the background context of Jive Anywhere. It can

implement any or none of the following public callbacks to set runtime hooks. Unimplemented callbacks

will provide the default behavior of Jive Anywhere.

The script can use the provided ModuleContext and JCommon helper APIs. In addition, jQuery and

JsRender template engine are available (using the $ keyword) out of the box. The script can freely use

cross-origin Ajax calls using the standard XmlHttp object or jQuery. Jive specific services should be called

using the provided ModuleContext.connectionContexts.activeConnection.clientFacade which

automatically handles authentication and errors.

 minimumRequiredVersion new in 2.1

A public property that must specify the minimum version of Jive Anywhere required for the

module. If the property doesn’t exist or has a higher value then the module won’t be activate.

 init ()

Invoked after the cartridge has been activated and pagescript.js has been injected into the page.

This method is invoked for each “full” navigation but not for “in-page” navigations.

 onGetNotificationUI (isSiteInWhitelist, callback) new in 2.1

Invoked after init() but before the sidebar is opened. Use the callback to return a

NotificationUiInfo object, which contains UI customizations for the notification button. The

isSiteInWhitelist boolean parameter is true if the URL was defined in the admin console under

the “Notifications Whitelist” section. By convention, you should respect the user’s privacy by not

querying data from servers (to decide if the notification button should be highlighted) unless the

site is in the whitelist. If not implemented, the default onGetUrlSearchResults() method will be

invoked to query results.

 onGetModuleUI (callback)

Invoked after the sidebar is opened for the first time after each “in-page” or “full” navigation or

after switching from another community.

Use the callback to return a ModuleUiInfo object, which contains UI customizations for the

sidebar.

 onMessage (command, data, sendResponse)

Invoked when PageModuleContext.sendMessage is called by pagescript.js. It should be used to

transfer JSON objects and messages between the page and the background contexts of the

cartridge. A message receives a command string, a JSON data object and a sendResponse

callback which can be used to send back a JSON object.

 onGetUrlSearchResults (searchData, callback)

Invoked when a URL (community) search is in progress. It can be overridden to replace the

default search logic and display different search results.

 onGetContainerSearchResults (searchData, callback)

Invoked when a connected place (group/space/project) search is in progress. It can be

overridden to replace the default search logic and display different search results.

 onGetNormalizedSearchUrl (url)

Invoked after the sidebar is opened. Returns the normalized URL of a visited page based on the

original one. This function is useful for cleaning the actual URL being searched and attached to a

new discussion or to generate a virtual URL for single-page apps.

 onGetRelatedContainerTag ()

Invoked when connecting, disconnecting or getting the connected place(s) for the page. Returns

the key tag for connecting a place to a URL. Identical tag keys for different URLs will handle the

same connected place(s). By returning an empty string you can disable results for the Related

discussions tab.

 onGetPreviewData (openGraphMetadata, isFinal, customValues, callback) new in 2.1

Invoked when a new discussion is created. Returns the HTML preview for the discussion. If not

provided, a preview based on OpenGraph will be used. You can use the openGraphMetadata

dictionary object for creating your own html or invoke a page context helper to extract

additional data. The isFinal parameter is true if a discussion is being created, otherwise it is just

used to preview the discussion. The customValues parameter contains the dictionary of

checkbox values defined in ModuleUiInfo.

 onCreateDiscussion (discussion, isPublic, callbackCompleted, uploadProgressCallback) new in

2.1

Invoked when a new discussion should be created. Note: the customValues property of

discussion will contain custom checkbox values defined in ModuleUiInfo. You can invoke the

uploadProgressCallback(value) method to display a progress bar while a discussion is being

created, and set the completed progress (float value between 0 to 1).

pagescript.js

This script file is injected into the page when the module is active, prior to calling the cartridge's init(). It

can contain public helper functions for reading and manipulating the DOM. These functions are defined

by the (object params, func sendResponse) signature and can be invoked by module.js using

ModuleContext.runPageScript(). Each function received a JSON object from the background context

and can send back a JSON object response using the sendResponse(object) callback.

The script can use the provided PageModuleContext and JCommon helper APIs. In addition, jQuery and

JsRender template engine are available (using the $ keyword) out of the box.

Container types and Helper classes

ModuleContext

Used by module.js to provide a set of helper APIs.

 version

Returns the installed version of Jive Anywhere.

 PageInfo pageInfo

Returns information about the current visited web page.

 connectionContexts new in 2.1

 ConnectionContext activeConnection

 ConnectionContext defaultConnection

 ConnectionContext[] connections[serverUrl or index]

 runPageScript (string funcName, object params, callback)

Runs the given function on the page context of a previously injected pagescript.js, passing a

JSON object and a callback. When sendResponse(result) is called by the targeted function, the

provided callback is invoked with the result as a parameter.

 getResourceFile (url)

Gets the textual content of a file from the cartridge package. The provided URL should be

relative to the cartridge's root folder. Content files such as scripts, HTML templates and CSS can

be fetched using this way and then be appended into the DOM (or eval’ed) into the current

scope.

 getResourceUrl (url)

Gets a fully qualified URL of a resource file from the cartridge package. The provided URL should

be relative to the cartridge's root folder. The returned URL can then be used as a source for

image elements or other embedded content.

 getInternalResourceUrl (url) new in 2.1

Gets a fully qualified URL of a static internal resource included with Jive Anywhere.

 newTab (url, openInBackground)

Opens a new tab with the specified URL. If openInBackground is true, the tab will not be

activated automatically.

 reloadSidebar () new in 2.1

Reloads the list of discussions, connected places and UI and reinvoke the relevant API calls such

as onGetUrlSearchResults(). Calling this method also clears the content of the new discussion

dialogue.

 updateNewDiscussionCheckboxes (Array[] checkboxArr) new in 2.1

Updates the collection of custom checkboxes in the new discussion dialogue and the discussion

preview without reloading the sidebar. The value should be an array of {name, checked, text,

refreshDiscussionPreviewOnChange}.

PageModuleContext

Used by pagescript.js to provide a set of helper APIs.

 sendMessage (string command, object data, callback)

Sends a command string and a JSON data object to the cartridge's onMessage function. When

sendResponse(result) is called by the onMessage function, callback is invoked with the result as

a parameter.

 createDiscussionViewFrame (frameId, typeId, itemId, serverUrl) new in 2.1

Create a new IFRAME with the loaded Jive item specified by the typeId and itemId. You may

specify the serverUrl of the community for the item or send null to select the default

community. The IFRAME can then be appended into the DOM. Its height is managed

automatically by Jive Anywhere so you’ll never see scrollbars inside the frame. You should also

implement the following public callback functions on pagescript.js:

 discussionFrameLoaded (params)

is invoked after the discussion frame has been loaded

params { frameId, discussion, serverUrl, typeId, itemId }

 discussionFrameCloseButtonClicked (params)

is invoked when the close button is clicked, so you can hide or remove the IFRAME from

the DOM.

params { frameId }

 discussionFrameScrollTop (params)

is invoked when the scrollbar location should be changed due to scrolling to a comment.

params { frameId, top }

 showSidebar(shouldOpenNewDiscussion, serverUrl) new in 2.1

This function allows you to open the sidebar when necessary and optionally open the new

discussion dialogue (for instance when a custom button is clicked). You may specify the

serverUrl of the community to select or send null to select the default community.

JFile new in 2.1

A binary file type which contains the following properties.

 data

 contentType

 name

 toDataUrl()

Converts the content to a base64 data URL.

JCommon

A single-ton helper class which provides many common functions. It is available for both module.js and

pagescript.js contexts.

Compatibility flags

 isIE

 isOldIE

Returns true if running on IE8 or lower.

 isBinarySupported new in 2.1

Returns true if the client support binary file handling (IE10, Chrome and Firefox are currently

supported)

 isQuirksMode

Returns true if the current page is using quirksmode and running IE<10

DOM Helpers

 trimHtmlWhitespaces(html)

 htmlEncode(value)

 htmlDecode(value)

 getNodeSource(htmlElement, shoudConvertRelativeUrls) new in 2.1

Gets an html from an element that can be sent to the server as the HTML body of a

discussion/document/comment object. It should always be used instead of a plain innerHTML

usage as it correctly standardize the HTML across all browsers and trims unnecessary white-

spaces. If shouldConvertRelativeUrls is true, all relative URLs of src and href attributes will be

converted to fully qualified URLs using the document’s base address.

 getNodeInnerSource(htmlElement, shoudConvertRelativeUrls) new in 2.1

 addCssFile(url)

Adds <style> element to the current document header with a link to external file. Note: Not

recommended, might be blocked by the browser if the visited website is using HTTPS protocol

but your Jive server is using HTTP.

 addCssText(styles) new in 2.1

Adds <style> element to the current document header with the textual content of the given

parameter. The CSS may contain background images with base64 encoded data URLs.

String Helpers

 shortenString(str, maxLength)

 getCookie(name, cookieStr?)

 getQueryStringParameterByName(name, queryStr?)

 getNonRelativeUrl(url)

Returns a fully qualified URL that can then be accessed from other pages. This method must be

called on the frame of the origin URL.

 asPrettyDate(date)

 asPrettyFileSize(fileSizeInBytes) new in 2.1

Asynchronous Programming Helpers

 asyncRunMultipleCalls(numOfCalls, codeFunction(index, submitResultCallback),

onCompleteCallback(Array[] results)) new in 2.1

 asyncRunForArray(Array[] arr, codeFunction(item, submitResultCallback),

onCompleteCallback(Array[] results)) new in 2.1

Runs multiple async operations on each item from the given array by passing it to the

codeFunction callback. The submitResultCallback must be called for each result after processing

each item. After all operations completed the onCompleteCallback method is invoked with all

the collected results ordered by their corresponding operation index. This method is very helpful

for processing requests from multiple communities by passing

ModuleContext.connectionContexts.connections as the array parameter.

Binary Helpers new in 2.1

 arrayBufferToBase64(Uint8Array arrayBuffer)

 base64ToArrayBuffer(base64str) IE8/9 not supported

 joinArrayBuffers(Uint8Array ab1, Uint8Array ab2) IE8/9 not supported

 strToArrayBuffer(str) IE8/9 not supported

Creates a UTF-8 encoded Uint8Array from string.

 createBinaryFilePart(jFile) IE8/9 not supported

Creates a Uint8Array object which can then be sent as a binary file content of a multipart

request using clientFacade.restHandler.sendBinaryRequest().

 createContentPart(body, isJson) IE8/9 not supported

Creates a Uint8Array object which can then be sent as the main content of a multipart request

using clientFacade.restHandler.sendBinaryRequest().

 getBinaryFile(url, callbackCompleted, callbackDownloadProgress) IE8/9 partially supported

Downloads a binary file from any website such as an image into a Uint8Array buffer which can

then be uploaded to a Jive server or converted to a base64 URL. When calling from the

pagescript.js context cross domain requests are not allowed, however, when calling from the

background context cross domain requests are allowed but fully qualified URLs should be used.

Cookies are automatically added to the request. Returns: jFile.

Note: For IE8/9, jFile.data contains a fake array instead of a Uint8Array object, which is much

slower and not recommended for big files. It can then by converted to a base64 string. For IE8

this method is only available in the background context.

Jive-specific Helpers

 convertServerDate(serverDate)

 getJiveObjectTypeById(id)

 decodeEmail(emailAddress) new in 2.1

Parses a jive reply-to email address which contains { prefix, userId, itemType, itemId }

PageInfo

Used by module.js to provide details about the current visited web page.

 url

 title

 domain

 bool isFrameSet

NotificationUiInfo

Used by module.js to get an object that defined custom UI changes to the notification button. All

properties are optional, if a value is not supplied the default one will be used.

 autoHide

If true, automatically hides the notification button when the sidebar is closed.

 highlight

If true, highlights the notification button. This property should be used to let the users there is

some interesting content on the sidebar, such as discussions in progress.

ModuleUiInfo

Used by module.js to get an object that defines custom UI changes to the sidebar. All properties are

optional, if a value is not supplied the default one will be used.

 defaultTabId

The default tab to display when opening the sidebar in activated page (0 = discussions, 1 =

related).

 defaultTitle

The default title for the new discussion form

 postButtonText new in 2.1

Set the label of the post button in the new discussion form

 hideSnapshots

If true, the “add a new snapshot” button will be hidden

 Array[] newDiscussionCustomCheckboxes new in 2.1

Create a list of additional checkboxes to display in the new discussion dialogue. The value should

be an array of {name, checked, text, refreshDiscussionPreviewOnChange}.

 Array[] tabs

This array (if defined) must contain 2 objects, the first one is for the “Discussions” tab and the

second for the “Related” tab

o html

(optional) HTML of custom container displayed at the top of the search results when the

module is active. It’s recommended to use the moduleTitle CSS class for decorating your

module’s HTML (e.g. <div class=”moduleTitle”>…</div>) in order to get consistent look.

o title

(optional) The search title to display replacing the generic this page term, “Viewing

discussion about this page”.

o hideDefaultUi new in 2.1

If true, the default UI displayed above the discussion list will be hidden

o hideFilters new in 2.1

o If true, the filters and sort controls above the discussion list will be hidden

ConnectionContext new in 2.1

Used to get metadata or communicate an instance of a connected community using its credentials.

 index

 serverUrl

 ClientFacade clientFacade

Returns a communication proxy to the Jive server. If the object is not the default or active

connection, you must first initializing it by calling getSettings() before accessing the clientFacade

property and wait for the callback to be invoked. Later you can access it directly.

 getSettings(callback)

Initialize the clientFacade property of the object if not yet initialized and receive the cached

system-info properties returned by the server.

 getConnectionSettings()

Gets current connection settings including serverUrl, embeddedAuthToken, favIconUrl and

instanceName.

ClientFacade

This class can be used to access Jive services REST APIs. Authentication and errors are handled

automatically.

 version

Returns the version of the façade matching the installed version of EAPIs

 searchUrl (url, offset, limit, sortBy, isAscending, callback)

Use to search for items based on URLs. Call on onGetUrlSearchResults and

onGetGroupSearchResults to create custom queries and manipulating results before sending

them to the callback function of the event.

 search (query, offset, limit, sortBy, isAscending, callback)

Use to search for items based on text content. Call on onGetUrlSearchResults and

onGetGroupSearchResults to create custom queries and manipulating results before sending

them to the callback function of the event.

 getContentInContainer (containerTypeId, containerId, offset, limit, filterType, callback)

Use to retrieve content in group, space or project.

 getConnectedUser (callback)

Returns the current connected user.

 getUserById (id, callback)

Returns a user matches the id.

 getUserByEmail (emailAddress, callback) new in 2.1

Returns a user matches the email address.

 searchMentions (query, callback)

Returns results for @mention query.

 searchSpotlight (query, offset, limit, callback)

Returns lists of places, people and content for the given query.

 searchUsers (query, limit, callback)

Returns list of people for the given query.

 searchContainers (query, limit, callback)

Returns list of places for the given query.

 createCommentForItem (itemTypeId, itemId, htmlContent, callback)

Creates a new comment or reply to the given item.

 createPublicDiscussion (subject, htmlContent, isQuestion, containerTypeId, containerId,

callback)

Creates a new public discussion at the specified container (place).

 createPrivateDiscussion (subject, htmlContent, isQuestion, userIds, callback)

Creates a new private discussion between you and the given users.

 createPublicConvertedDiscussion (messageData, containerType, containerId, emailMessageId,

notifyExternalRecipients, JFile[] attachments, callbackCompleted, callbackUploadProgress)
new in 2.1

Create a public discussion that has been converted from email messages. Note: attachments is

not supported on IE8/9 and require EAPIs v3.

messageData is: { question, Array[] notificationRecipients, Array[] messages{body, subject,

sender, senderName, Array[] attachmentUris} }

 createPrivateConvertedDiscussion (messageData, userIds, emailMessageId,

notifyExternalRecipients, JFile[] attachments, callbackCompleted, callbackUploadProgress)
new in 2.1

Create a private discussion that has been converted from email messages. messageData

described in the former method.

 getConvertedDiscussions (emailMessageId, callback) new in 2.1

Returns a list of discussion URLs (EAPIs v2.1) or discussion objects (EAPIs v3) for discussions that

has been previously created using the createConvertedDiscussion API using the same

emailMessageId.

 getConnectedContainers (tag, callback)

Returns a list of connected places to a tag.

 attachContainerToTag (containerTypeId, containerId, tag, callback)

Attaches a place into a new or existing tag.

 detachContainerFromTag (containerTypeId, containerId, tag, callback)

Detaches a place from a tag.

 createNewConnectedGroup (name, tag, description, groupType, callback)

Creates a new group attached to the given tag.

 sendGroupInvites (groupId, groupName, userEmails, callback)

Sends group invites to the given emails.

 getDefaultDiscussionFolders (callback)

Returns the recent containers used to create a discussion.

 getDiscussion (typeId, itemId, increaseViewCount, callback)

Returns a discussion and its comments.

 like (typeId, itemId, callback)

Sets the given item as liked.

 unlike (typeId, itemId, callback)

Sets the given item as unliked.

 markCorrect (messageId, boolToggleState, callback)

Marks the given item as correct or incorrect according to the toggle state.

 markHelpful (messageId, boolToggleState, callback)

Marks the given item as helpful or un-helpful according to the toggle state.

 uploadImage (JFile imageFile, callbackCompleted, callbackUploadProgress) new in 2.1, IE8/9 not

supported, requires EAPIs v3

Uploads an image from JFile object (Uint8Array) to the Jive storage and returns an ID which can

then be referenced to embed the image into discussions/documents/comments.

 uploadAttachmentsToContent (contentId, JFile[] attachments, callbackCompleted,

callbackUploadProgress) new in 2.1, IE8/9 not supported, requires EAPIs v3

 uploadAttachmentsToMessage (messageId, JFile[] attachments, callbackCompleted,

callbackUploadProgress) new in 2.1, IE8/9 not supported, requires EAPIs v3

 restHandler new in 2.1

 sendWebRequest (requestType, actionUrl, object data, callbackCompleted, bool

isJson?, bool sendWithoutCredentials?)

Sends an Ajax request using the underlying communication layer. requestType can be

either “GET”, “POST”, “PUT”, “HEAD” or “DELETE”. actionUrl is a URL for the service

related to the server address. Error handling and authentication is managed by Jive

Anywhere. If you wish to send an object as JSON, make sure to set isJson as true,

otherwise it will be sent as a query string.

 sendBinaryRequest (requestType, actionUrl, Uint8Array[] arrayBuffers,

callbackCompleted, callbackUploadProgress) IE8/9 not supported

Sends a multipart request of binary parts of type Uint8Array. Each binary part represent

a file and it must contain headers which can be added using the

JCommon.createBinaryFilePart() or JCommon.createContentPart() methods. Note: In

order to process just one binary part you have to place it inside a single-item array using

“[object]”.

 postMultipartRequest (actionUrl, object data?, JFile[] files, bool isJson,

callbackCompleted, callbackUploadProgress)

A shortcut for sending a POST request that optionally has one textual data part and

multiple binary parts. In case binary mode is not available for the browser, or no files

attached, a fallback to sendWebRequest() will be initiated.

JsRender Template engine Helpers

 ~getResourceUrl(relativeModuleUrl)

Returns a URL which can be embedded in HTML as a resource linked to a file in the cartridge package.

For instance

 ~getInternalResourceUrl(relativeInternalUrl) new in 2.1

Returns a URL following an internal resource of the Jive Anywhere extension. This can be used to get

default images such as the default profile image bundled with the extension.

Debugging your cartridge

For code changes to take effect, you have to restart the browser or reload the extension (Chrome/Safari) each

time you upload the cartridge via the Admin console.

The easiest way to debug is using Chrome or Internet Explorer. In both cases you can add the "debugger;"

statement in order to break into debugger when approaching the statement. You can also use

console.log(object) to print output into the debugger console.

Debugging Internet Explorer

Press F12 to open the developer tools, click the Script tab and "start debugging".

Debugging Chrome

1. To debug pagescript.js - press F12 to open the developer tools, then click the Sources tab.
2. To debug module.js or other background context – go to Extensions in the Settings page of Chrome,

make sure "Developer mode" is checked, and click the URL near "Inspect views", then click the Sources
tab.

Debugging Safari

Open the preferences dialogue, click Advanced and make sure “Show Develop menu in menu bar” is checked.

1. To debug pagescript.js - click the Develop menu and select “Start debugging JavaScript”.
2. To debug module.js or other background context – click the Develop menu and select “Show Extension

Builder”, then click the “Inspect Global Page” button in Jive Anywhere.

Debugging Firefox

Due to the lack of ability to debug background extension context it is not recommended to use Firefox for

debugging your cartridges. If no other option is available try using JavaScript alerts.

Manage cartridges via Admin console
Jive Anywhere cartridges are managed in the Admin console of Jive SBS. Go to http://your-jive-address/admin

to enter the Admin console, then select System -> Settings -> Jive Anywhere at the menus and click the

Modules tab. You must have an account with administrator privileges to enter this page.

Upload a new module
To upload a new cartridge, click Upload new module in the Modules tab.

In the displayed dialog enter the following fields:

 Type a display name for the cartridge.

 Choose the zip file of the new cartridge. The zip file must contain module.js and the optional files

pagescript.js and icon.png as described in the Developer Guide section.

 Apply the cartridge included patterns. The cartridge will be activated only if one or more of the patterns

matches the URL of the visited page. For instance google.com will match any web page in the

google.com domain. You can also use Regular Expression patterns by prefix the pattern with a $ sign. For

instance $[http|https]://google.com will match either http://google.com or https://google.com.

Type each URL pattern in the textbox field and click the “Up” arrow to apply. Select an existing URL from

the list and click the “Down” arrow to edit. Note: only one cartridge can be applied for a web page. If

more than one cartridge matches the current web page, only the first one will be applied.

Click the Submit button to upload the cartridge as Unpublished. While a cartridge is unpublished only its owner

will be able to use it, in this case the Admin. After testing the cartridge you may choose to publish it.

Edit existing cartridge
To modify a cartridge click the “Select action…” dropdown list near the cartridge you wish to modify and select

Edit. The Edit cartridge dialog will appear.

Remove existing cartridge
To remove a cartridge click the “Select action…” dropdown list near the cartridge you wish to remove and select

Delete.

Publish and Un-publish a cartridge
After a cartridge has been tested it can be published to all users. Click the “Select action…” dropdown list near

the cartridge you wish to publish or un-publish and select Publish or Unpublish.

Un-published cartridges will be only usable by their owners, while published cartridges will be usable by all

users. All cartridges should be tested before being published.

	Jive Anywhere – Cartridges SDK 2.1
	Overview
	Minimum requirements
	What’s new in Cartridges SDK 2.1
	More ways to control the UI of the sidebar and the new discussion dialogue
	New server APIs
	Comprehensive support for binary file handling
	Easier to target for multiple versions of Jive Anywhere and Jive server
	Other improvements

	Common use cases for the SDK
	Developer Guide
	Components
	Creating your first Jive Anywhere cartridge
	module.js
	pagescript.js
	LinkedInPageDataTemplate.html

	API Reference
	Script files
	module.js
	pagescript.js

	Container types and Helper classes
	ModuleContext
	PageModuleContext
	JFile new in 2.1
	JCommon
	PageInfo
	NotificationUiInfo
	ModuleUiInfo
	ConnectionContext new in 2.1
	ClientFacade

	JsRender Template engine Helpers

	Debugging your cartridge
	Debugging Internet Explorer
	Debugging Chrome
	Debugging Safari
	Debugging Firefox

	Manage cartridges via Admin console
	Upload a new module
	Edit existing cartridge
	Remove existing cartridge
	Publish and Un-publish a cartridge

